Kinetic Analysis of an Efficient DNA-Dependent TNA Polymerase

نویسندگان

  • Allen Horhota
  • Keyong Zou
  • Justin K. Ichida
  • Biao Yu
  • Larry W. McLaughlin
  • Jack W. Szostak
  • John C. Chaput
چکیده

alpha-l-Threofuranosyl nucleoside triphosphates (tNTPs) are tetrafuranose nucleoside derivatives and potential progenitors of present-day beta-d-2'-deoxyribofuranosyl nucleoside triphosphates (dNTPs). Therminator DNA polymerase, a variant of the 9 degrees N DNA polymerase, is an efficient DNA-directed threosyl nucleic acid (TNA) polymerase. Here we report a detailed kinetic comparison of Therminator-catalyzed TNA and DNA syntheses. We examined the rate of single-nucleotide incorporation for all four tNTPs and dNTPs from a DNA primer-template complex and carried out parallel experiments with a chimeric DNA-TNA primer-DNA template containing five TNA residues at the primer 3'-terminus. Remarkably, no drop in the rate of TNA incorporation was observed in comparing the DNA-TNA primer to the all-DNA primer, suggesting that few primer-enzyme contacts are lost with a TNA primer. Moreover, comparison of the catalytic efficiency of TNA synthesis relative to DNA synthesis at the downstream positions reveals a difference of no greater than 5-fold in favor of the natural DNA substrate. This disparity becomes negligible when the TNA synthesis reaction mixture is supplemented with 1.25 mM MnCl(2). These results indicate that Therminator DNA polymerase can recognize both a TNA primer and tNTP substrates and is an effective catalyst of TNA polymerization despite changes in the geometry of the reactants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High fidelity TNA synthesis by Therminator polymerase

Therminator DNA polymerase is an efficient DNA-dependent TNA polymerase capable of polymerizing TNA oligomers of at least 80 nt in length. In order for Therminator to be useful for the in vitro selection of functional TNA sequences, its TNA synthesis fidelity must be high enough to preserve successful sequences. We used sequencing to examine the fidelity of Therminator-catalyzed TNA synthesis a...

متن کامل

An in Vitro Selection System for TNA

(3'-2')-alpha-l-Threose nucleic acid (TNA) is an unnatural polymer that possesses the rare ability to base-pair with RNA, DNA, and itself. This feature, coupled with its chemical simplicity, makes TNA of interest as a possible progenitor of RNA during the early history of life. To evaluate the functional potential of TNA, we have developed a system for the in vitro selection of TNA. We identifi...

متن کامل

DNA polymerase-mediated DNA synthesis on a TNA template.

TNA, or threose nucleic acid, is capable of Watson-Crick base pairing with DNA, RNA, and TNA; coupled with its chemical simplicity, this suggests that TNA is a possible progenitor of RNA. As an initial step toward developing the molecular tools necessary to investigate the functional capabilities of TNA by in vitro selection, we have screened a variety of DNA polymerases for activity on a TNA t...

متن کامل

TNA synthesis by DNA polymerases.

Threose nucleic acid (TNA), which has a repeat unit one atom shorter than that of DNA, is capable of Watson-Crick base pairing with DNA, RNA, and TNA. Because of its chemical simplicity, TNA is considered to be a possible progenitor of RNA. As an initial step toward developing the molecular tools necessary to investigate the functional capabilities of TNA by in vitro selection, we have screened...

متن کامل

Recognition of threosyl nucleotides by DNA and RNA polymerases.

Alpha-L-threose nucleic acids (TNA) are potentially natural nucleic acids that could have acted as an evolutionary alternative to RNA. We determined whether DNA or RNA polymerases could recognize phosphorylated threosyl nucleosides. We found that for both the Vent (exo-) DNA polymerase and HIV reverse transcriptase K(m) values were increased and kcat values decreased for the incorporation of tT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2005